

Hans Karlsen M.sc, CTO

Doing MVC with CapableObjects – a white paper in 4 parts
CapableObjects are all about model driven development. The reason why we believe so firmly in model

driven development is – all things considered – speed and quality.

MVC – Part1
Model-View-Controller pattern for the web. You can read tons of tutorials and descriptions all around

the web – here I will focus on the

key aspects of using

CapableObjects tools for MVC.

Hit F5 to run it

Hans Karlsen M.sc, CTO

This was standard by the book and this is our starting point. From here CapableObjects can help you

with a couple of things:

1. Faster creation of your models

2. Faster creation of your applied models that are geared to a certain controller – aka a ViewModel

3. Managing all things regarding your database schema

4. Easier managing of a constant evolving model – keeping your data as you go along

In order to get started we

download the Eco install from

capableObjects. This is a

VisualStudio (2013,2012) plugin.

Once you have it you see this:

Hans Karlsen M.sc, CTO

Add a new

project to the MVC solution:

Hans Karlsen M.sc, CTO

With CapableObjects all

entities belong to an

EcoSpace – in this

sample it is called

EcoProject1EcoSpace.cs

– we also have the

persistence mapper

provider (PMP) – this

governs how the objects

(in the ecospace) are

actually stored – in this project it is called EcoProject1PMP.cs. Open it:

There are three different Persistence mappers there already – we can only use one at a time.

Delete persistenceMapperWCFClient1 and persistenceMapperXml1.

Click the white space in the EcoSpace so that you see the properties in the properties window. Then set

the persistenceMapper to the added persistenceMapperSqlServer:

Select the persistenceMapperSqlServer component and set the properties:

Hans Karlsen M.sc, CTO

This means we have an empty database.

We need to instruct it to follow our model:

Hans Karlsen M.sc, CTO

Seven new tables – the ones starting with ECO are maintained by the framework in order to help you

with future evolves of the database schema – they are always just five – do not worry, they are there for

practical reasons – as you learn more you will find ways to store this model information in other ways if

you need to.

The two first tables CLASS1 and CLASS2 are the ones from our model.

Switch to Model and Add a

Class3, add an Attribute

and a relation to Class2 :

Press Update Code and

then Rebuild. A file was

added:

Hans Karlsen M.sc, CTO

Back to the persistence mapper – we need to instruct the database to evolve to our new model:

Notice the difference between “Generate Schema” as we did first and “Evolve schema”. If you want to

clean your database from all data and start anew -> “Generate”, but if you want to evolve your database

– keeping as much data as possible -> “Evolve”. This is a roundtrip you will take many times when you

are agile and model driven with CapableObjects.

Hans Karlsen M.sc, CTO

The database schema

evolve detected the need

for new table, and also a

new column on class 2 to

hold the foreign key to

Class3 (the association we

added to the model).

Now it is Time to make use of our model in the MVC project.

Add the following references to the MVC project:

Set Copy Local on these:

Hans Karlsen M.sc, CTO

Create a new View “Index” in a new Views folder MDriven, choose Model class Class1, Choose scaffold

template “List”:

Since this view was placed in MDriven it

will look for MDrivenController to

handle all actions. So create

MDrivenController:

We are going to change the baseclass

from a standard controller to a

Hans Karlsen M.sc, CTO

controller that knows that we are model driven and that knows that we want to use our ecospace:

Like so:

Add these;

using Eco.Handles;
using Eco.Linq;
using Eco.MVC;
using EcoProject1;
using EcoProject1.EcoSpaceAndModel1;

Now we can

use the

ecoSpace to

get to the

model

driven data:

When we create an object that should be owned by our ecospace – we send in a reference to this

ecospace in the constructor. In the code above we use Linq to – thru our persistence mapper – ask the

database of all the instances of Class1.

Hans Karlsen M.sc, CTO

Our controller has a method Commit that saves the objects via the persistence mapper to the database.

We run:

Let us a take a look at edit. Adding another view in the

MDriven folder:

Hans Karlsen M.sc, CTO

I fix the Index view’s action so that the Class1 ExternalId (every object has one with us) is passed into

edit:

Add a using statement at the top of the cshtml file;

@using Eco.ObjectRepresentation

And add an action handler to the controller:

The method gets an identity and fetches the corresponding object that is sent to the new Edit view:

Hans Karlsen M.sc, CTO

And when I click save the form is

posted back to the controller. I have

added this method to handle this:

The c1 we get as an argument is a

data-wise copy of the ecospace Class1

object we sent to edit –it has round

tripped to the browser as html and

been posted back as form data. We

call such objects for Offline-objects.

We use the a method of our

modeldriven controller to apply values

from offline to the online counterpart.

Done. We have listed, edited and

updated. We have been strongly typed

all the time and we are well equipped for model evolution.

Hans Karlsen M.sc, CTO

MVC with CapableObjects – Part 2
What if our model looked like this:

If the model resembles this you

may not be comfortable with

throwing around those

BigSecrets or supersensitivedata

in your MVC views?

Or what if it looks like this:

It is at best confusing to show all the

internal stuff to the front end

developers. There is always the risk

that you as a frontend developer

expose something you should not.

These are the main two reasons for slicing your data in better – more to the point – chunks. Chunks

adapted to given tasks. Such chunks are views or perspectives of your whole model. We call them

ViewModels.

Hans Karlsen M.sc, CTO

ViewModels as CapableObjects

defines them are always rooted in a

ModelClass. You then add named

ViewModel properties – called

ViewModelColumns to the

ViewModelClass. A

ViewModelColumn is always derived

with an expression in OCL. The

expressions can be very simple like

“self.Attribute1” or more complex as

“self.ListOfSecrets->size”. It is easy

and fast to declare ViewModels in the

model.

When a ViewModel has the “CodeGen”-checkbox checked – it will manifest itself as code that is

maintained and updated whenever you press Generate code in the model surface.

So I Generate code, and build, execute Evolve Model

from the PMP – this to update the database with all

the changes I did to the model:

The new files are added to the project:

Hans Karlsen M.sc, CTO

I know want to use the Class1Perspective instead of

the Class1.

I do this in a new controller MDrivenVM – Lets do

the View first:

And an edit view:

Hans Karlsen M.sc, CTO

And edit:

To handle this I added this code in the controller:

And

Hans Karlsen M.sc, CTO

Hans Karlsen M.sc, CTO

MVC with CapableObjects Part 3
Have you ever wished that the view scaffolding would be a little more flexible? That it could do more

stuff directly like images and selectlists? That it would follow your model even when you change it? If it

were just a tiny bit better we could really wip something together superfast and see what the user

thinks of it: Keep? Improve? ChangeMyMind?

With CapableObjects ViewModels you can. Each ViewModel column can hold user interface hints.

Changing the model again:

And a new ViewModel – now with UI-hints:

Hans Karlsen M.sc, CTO

It is easy to get carried away since you have big help of the model awareness that gives you shortcuts to

the most obvious things. I added a text field, a picture and a selectlist, followed by a grid. I then also

added a static info field that will write something depending on if the picture is set or not.

Evolve the database again:

I will click up the prototype

tool from the model

surface:

I can enter the connection

string to our database click

Show EcoSpaceDebugger.

Hans Karlsen M.sc, CTO

Here I can create some objects for the ValueStore class:

I change our editing actionhandlers in the MDrivenVMController to use the new ViewModel:

Hans Karlsen M.sc, CTO

I must also change the View. It uses another model – and I also want it to use all the UI-hints from the

model. I make this happen with the DisplayWecpofUI call:

Hans Karlsen M.sc, CTO

And run:

Hans Karlsen M.sc, CTO

Edit:

We get picklist, an image, an editbox – all databound to viewmodel data, we also get actions that can

execute any method you add in your model – in c#.

Combine your UI hints with Style references to your css to get the look you want.

So using UIHints in the viewmodel can be a real boost in development time. If you can manage all the

simple and standard admin UI like this – imagine how much time you free up to do the advanced cool

stuff that you dream about.

Hans Karlsen M.sc, CTO

MVC with CapableObjects Part 4
At CapableObjects we are constantly looking for new ways of moving definition from code into the

model, our aim is to build things faster with higher quality. The result of our strive is a concept we call

wecpof. Wecpof is the ability to declaratively define what views a system has, how navigation is done

between these views and what actions that can be done on the information. Wecpof was first tested in

WPF applications – and the play button in the model-surface will take you to a wecpof driven executing

version of your model.

Take a look:

Hans Karlsen M.sc, CTO

Same things as you saw in MVC are now in WPF.

Hans Karlsen M.sc, CTO

To get WECPOF working we need actions. Actions can either do stuff (change data) or navigate (change

view). Take a look at the actions currently in our model

You can very fast build advanced WPF applications with Wecpof – and as I will show you next – you can

also use the wecpof concept in MVC.

I will create yet another controller, this time I let it inherit from ModelDrivenControllerBase. I will only

implement the Index action handler – telling it to use the GenericView view that I will add next:

Hans Karlsen M.sc, CTO

Now I add the view that wecpof will use, GenericView;

The GenericView use VMClass as model – VMClass is the superclass of all code generated ViewModels.

The View has two htmlhelpers – DisplayWecpofActions and DisplayWecpofUI:

Hans Karlsen M.sc, CTO

Run:

Clicking a row (in wecpof for MVC the first navigating action available on an action is used as the action

to execute when clicking a grid row):

Hans Karlsen M.sc, CTO

So let us add a viewmodel for class2 and an action to show it:

Hans Karlsen M.sc, CTO

Making use of the shortcut to create an action:

The action is found here:

Hans Karlsen M.sc, CTO

Update code, run:

Clicking in on a Class1, notice the Class2’s has been turned into links:

Hans Karlsen M.sc, CTO

And voila:

Pressing the “Create Class3” link:

I can see that it creates a Class3 – but the Attribute1 of this class is not set by the action. Will fix:

Hans Karlsen M.sc, CTO

Lets add a list of all class3 as well to the viewmodel:

While I am at it – might as well add a viewmodel and an action to show Class3…:

Hans Karlsen M.sc, CTO

Update code, run:

The Create Class3 works ok… Click into one of the class3’s:

And that works as well… Notice that we have a list of the Class2’s that use this Class3 – these are also

links – because we defined a ClassAction on Class2 to show the ViewModelForClass2 – so we can

navigate back… Easy. Fast. NeverFails.

Once I have wecpof set up this way I do not need to write more mundane code – I can define actions

and viewmodels in the model and the MVC app will follow.

When you combine this with the advanced modelling abilities from CapableObjects – you can do a lot –

fast – with high quality. And still you mix in custom jobs wherever you need in your app – it is just with

CapableObjects you can finally spend 90% of the time on the 10% cool stuff. Challenged? I promise you:

it is fun, fast, new – and we have just started… Join us!

